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von Kármán–Howarth relationship for helical magnetohydrodynamic flows
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We derive an exact equation for homogeneous isotropic magnetohydrodynamic~MHD! turbulent flows with
nonzero helicity; this result is of the same nature as the classical von Ka´rmán–Howarth~VKH-HM ! formula-
tion for the kinetic energy of turbulent fluids. Helical MHD is relevant to the astrophysical flows such as in the
solar corona, or the interstellar medium, and in the dynamo problem. The derivation involves the new writing
of the general form of tensors for that case, for either vectors or~pseudo!axial vectors. It is shown that, for
general third-order tensors, four generating functions are needed when taking into account the nonmirror
invariance of helical fluids, instead of two as in the fully isotropic case. The new equation obtained, denoted by
VKH-HM, links the dissipation of magnetic helicity to the third-order correlations involving combinations of
the components of the velocity, the magnetic field, and the magnetic potential. Finally, in the long-time and
nonresistive limit, this relationship leads to a linear scaling with separation of the third-order tensor, correlating
the two normal components of the electromotive force and of the magnetic potential.
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I. INTRODUCTION

In turbulent flows, the existence of rugged invariantsI 0

that survive truncation of the nondissipative equations
thought to play an important dynamical role, and may lead
nontrivial behavior when more than one such invariant
present, as already noted by Onsager@1#. Indeed, an inverse
cascade of kinetic energy to large scales in two space dim
sions can be predicted for Navier-Stokes turbulence on
basis of an argument stemming from statistical mechanic
uses the fact that both energy and enstrophy are conserv
the inviscid case~see, e.g., Kraichnan and Montgomery@2#
for a review!. Such invariants cascade with a Fourier sp
trum I 0(k), wherek is the wave number, assuming isotrop
the cascade is either to small scales or to large scales
takes place at a ratee I 0

prescribed by the injection mecha

nism into the system. Dimensional analysis in the manne
Kolmogorov then leads to a prediction for power-law spec
I 0(k), e.g., thek25/3 kinetic energy spectrum for Navier
Stokes turbulence. Such Kolmogorov spectra are of a p
nomenological nature except in the case of weak turbule
involving fast waves~see, e.g., Refs.@3,4#!.

On the other hand, the presence of the invariantsI 0 allows
for the derivation ofexact equations. For example, vo
Kármán and Howarth@5# derived the relationship betwee
the rate of energy dissipationev2 and the third-order corre
lation functions of the velocity fieldv. Similar exact equa-
tions have been obtained for the variances of physical fie
at several instances, e.g., for the variance of a passive s
@6#, for that of the magnetic potential in two-dimension
incompressible magnetohydrodynamic~MHD! @7#, for the
total ~kinetic plus magnetic! energyET5^v21b2&/2 and to-
1063-651X/2003/68~2!/026315~9!/$20.00 68 0263
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tal velocity-magnetic field correlationHC5^v•b&/2 @8,9# in
two- and three-dimensional incompressible MHD~wherev is
the velocity,b5“3a is the magnetic induction, anda the
magnetic potential!, and for the kinetic helicityHV5^v
•v&/2 ~where v5“3v is the vorticity! for three-
dimensional incompressible Navier-Stokes flows@10# ~see
also Refs.@11#!.

Another invariant of the MHD equations for zero ma
netic diffusivity @12# is the magnetic helicity

HM5
1

2
^a•b&.

It is known to play an important dynamical role, e.g., in t
solar corona—in flares and in coronal mass ejectio
@13,14#—and in the dynamo problem, i.e., the generation
magnetic fields through turbulent motions. Magnetic fie
are observed in the core of the earth and planets, in the
and stars, and in the interstellar and intergalactic media.
namos have been extensively studied theoretically and
merically, starting with the pioneering works of Parker@15#
and Steenbecket al. @16# in the former case and of Bullard
and Gellman@17# in the latter. More recently, the dynam
effect in turbulent flows is being studied in the laboratory
well @18,19# in the specific configuration corresponding
two counter-rotating disks. The role of magnetic helicity
the dynamo mechanism arises in the nonlinear saturatio
the so-calleda effect, i.e., in the saturation of the growth o
a magnetic field at a given~large! scale because of the pre
ence of helicity~kinetic at first, kinetic and magnetic at late
stages of the instability! at small scale. It was conjectured i
Ref. @20# and shown—using second-order closures in R
@21#, as well as direct numerical simulations in Re
©2003 The American Physical Society15-1
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@22,23#—that HM undergoes an inverse cascade to la
scales. Later works confirmed these findings, and this
cade is also known to persist for supersonically driven flo
@24#, showing that even in the interstellar medium whe
compressibility plays an important role because of, e.g.,
pernovae blast waves sweeping sporadically the gas
a-like dynamo is plausible. This saturation mechanism
nonlinear and does not involve the later saturation of
growth of thetotal magnetic energy, a saturation which c
be linked directly to the magnetic Reynolds number~a recent
study of this point can be found in Brandenburg and Sar
@25#!. Moreover, the heating of the solar corona, throu
dissipative processes, is linked to the reversal of the m
netic dynamo field, a process in which the conservation
magnetic helicity plays an essential role@13,26#. Note also
that there is a resurgence of interest in helical flows in n
tral fluids ~see, e.g., Ref.@27# and references therein!.

We thus propose to derive in this paper the exact equa
that takes into account the fact that the induction equa
conservesHM ~a simplified version in the one-dimension
case is done by Galtieret al. @28#!. In so doing, we shall need
to write from first principles the complete form of th
second-order~see also Ref.@29#! and third-order tensors
when the mirror symmetry is broken, when tensors invo
different fields ~namely, here the magnetic potential, t
magnetic induction, and the velocity!, and taking into ac-
count the fact that the magnetic induction is an axial vec
This is performed following the approach of Batchelor@30#,
and is shown in the Appendix for clear readership of
remainder of the paper. We give basic definitions in Sec
and we derive, in Sec. III, the dynamical von Ka´rmán–
Howarth equation for magnetic helicity, which we call VKH
HM. Finally, Sec. IV is the conclusion.

II. KINEMATICS OF HELICAL FLOWS

A. Definitions

We consider fluctuating fields in incompressible MH
flows; the zero-mean velocityv(x) and magnetic fieldb(x)
are, respectively, the proper and pseudo~axial! vectors, with
x the Cartesian position vector relative to some fixed orig
In the context of three-dimensional MHD turbulence, t
magnetic helicityHM is a pseudoscalar, interpretable as
measure of knottedness of the magnetic field lines@31,32#.

The ~unsymmetrized! magnetic helicity correlation tenso

R̃i j
HM~x,x8!5^ai~x!bj~x8!&

is a pseudotensor, whereas the magnetic potentiala(x) is a
true vector; x8 denotes the displaced positionx1r and
brackets denote the ensemble average or equivalently, u
an ergodic hypothesis, large-space or long-time average@30#.
Finally, because of homogeneity,R̃i j

HM(x,x8)5R̃i j
HM(r ).

B. Kinematical construction of tensors

In the case of homogeneous turbulence which has sph
cal symmetry but does not have reflexional symmetry, i
for isotropic ~or skew-isotropic! turbulence, as in the pres
02631
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ence of kinetic or magnetic helicity, the structure of the tw
point correlation tensors is more complex than in the f
isotropic case, i.e., isotropic and reflexion~or mirror! sym-
metric cases. Their general form includes terms based
additional fundamental invariants, such as

e i j ,cidj r , ,

in the expression of the mean value products of vector~or
pseudovector! components in the directions ofc and d, the
directed distancer describing the configuration formed b
the two points at which the correlations are studied. Th
invariants preserve the rotational symmetry but change s
when the three-vector configuration (c,d,r ) is reflected at
any point or plane@33#. In the above relationship, as usua
e i j , denotes the unit alternating tensor. Thus, for isotro
turbulence, one can note that the second-order two-point
relation tensor is no longer index symmetric.

The second-order correlation tensors have been dealt
in Ref. @29#, and the main results of these authors are
called in the first section of the Appendix. A thorough de
vation of the general form of the homogeneous third-or
tensors for incompressible isotropic but helical fields is o
tained in the second section of the Appendix. For comple
ness, we restate in this section some of the tensorial obj
needed to obtain the VKH-HM equation.

The second-order correlation tensor for the magnetic
tential is aproper ~true! tensor which, assuming homogen
ity and isotropy, reads

Ri j
aa~r !5^ai~x!aj~x8!&5Aaa~r !r i r j1Baa~r !d i j

1C̃aa~r !e i j ,r , , ~1!

where C̃aa(r ) is a pseudoscalar function and all the tens
coefficients are even functions of the distancer 5ur u due to
spherical symmetry.

Magnetic helicity is related to the term proportional
C̃aa(r ). Indeed, the antisymmetric part of the tens
C̃aa(r )e i j ,r , can also be written as@29,34#:

e i j ,

]

]r ,
f~r !,

wheref(r ) is an even pseudoscalar function ofr , such that
f(r50)5HM @see Eq.~A8!#.

Using the Coulomb gauge, two generating functions
main linked to the magnetic helicity of the flow:

Ri j
aa~r !

ā2 5 f aa~r !d i j 1
r

2

] f aa~r !

]r
Pi j ~r !1e i j ,

r ,

r
s̃aa~r !;

~2!

as usual

Pi j ~r !5d i j 2~r i r j !/r
2

is the incompressibility projectorā2f aa(r ) is the~dimension-
alized! longitudinal correlation function of the magnetic po
5-2
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tential, andā is the rms magnetic potential. It has been ne
essary in the above equation to introduce as well a n
function s̃aa(r ), with

R23
aa~r !5rC̃aa~r !e23L[ā2e23Ls̃aa~r !,

where the subscriptL refers to the longitudinal~along r )
direction, while the subscripts 2 and 3 refer to the two
maining transverse directions in the three-dimensional sp

An analogous definition holds for the magnetic helic
pseudotensor with

R̃i j
HM~r !5^ai~x!bj~x8!&5e j ,m

]Rim
aa~r !

]r ,
, ~3!

the derivative being carried on the magnetic field. It can a
be written as

R̃i j
HM~r !

c2
5 f̃ ab~r !d i j 1

r

2

] f̃ ab~r !

]r
Pi j ~r !1e i j ,

r ,

r
sab~r !,

~4!

wherec25āb̄ is a ~scalar! constant, withb̄ the ~scalar! rms
magnetic amplitude. Note that we generally indicate
pseudocharacter of a function or a tensor with a tilde sym
except forHM , the magnetic helicity itself.

The third-order correlation tensor needed to derive
VKH-HM equation is the following pseudotensor involvin
the velocity, the magnetic field, and the magnetic potenti

F i j ,
vba~r !5^v i~x!bj~x!a,~x8!&5ã11

vba~r !r ,d i j 1ã12
vba~r !r jd i ,

1ã13
vba~r !r id j ,1ã3

vba~r !r i r j r ,1b23
vba~r !r ie j ,mr m

1b22
vba~r !r je, imr m1b21

vba~r !r ,e i jmr m , ~5!

where the seven coefficients appearing in this general d
nition are even functions of the distancer, as for the second
order correlation tensor. The incompressibility constra
leads to relationships between these coefficients and turn
a formulation of the tensor involving only four generatin
functions~see details in the Appendix!.

III. A von KA´ RMÁ N EQUATION
FOR MAGNETIC HELICITY

A. The derivation

We now move on to the dynamics of magnetic helicity
homogeneous MHD turbulent flows. The incompressi
MHD equations for the magnetic potentiala write

] ta5v3b1hDa, ~6!

using the Coulomb gauge“•a50; in the above equation,h
is the magnetic diffusivity. In MHD, this equation is couple
to the velocity equation, the latter not being needed to pr
that magnetic helicity is an invariant of the flow; hencefor
we will not need the velocity equation to derive the exa
VKH-HM law for magnetic helicity.
02631
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The equation for the time evolution of the second-ord
correlation pseudotensorR̃i j

HM(r )5^ai(x)bj (x8)& results
from Eq. ~6!, written at pointx and the induction equation
written at pointx85x1r . This leads to

]

]t
R̃i j

HM~r !5e i ,mF,m j
vbb~r !1] r k

@F jki
vba~2r !2Fk j i

vba~2r !#

12h
]2

]r k
2 R̃i j

HM~r !, ~7!

where the form of theF i j ,
. . . tensors are derived in the Ap

pendix for the general case@see Eq.~A9!#, and] r k
5]/]r k .

Note that both (vba) and (vbb) tensors appear in the
above equation. However, the proper tensorF,m j

vbb(r ) can be
derived from the pseudotensorF,m j

vba(r ) as follows:

e i ,mF,m j
vbb~r !5e i ,me jpq] r p

F,mq
vba ~r !

5r 2d i j F1

r

]~ ã13
vba2ã12

vba!

]r
12

ã13
vba2ã12

vba

r 2 G
2

r i r j

r

]~ ã13
vba2ã12

vba!

]r
1e i jmr m

3F r
]~b23

vba1b22
vba!

]r
13~b23

vba1b22
vba!

22b21
vbaG . ~8!

The tensor coefficientsã..
...(r ) are pseudoscalar functions

while the b..
. . . (r ) coefficients are scalar. Expressing all th

third-order tensors as derived in the Appendix, the nonlin
terms in Eq.~7! write, after lengthy but straightforward al
gebraic computations:

e i ,mF,m j
vbb~r !1] r k

@F jki
vba~2r !2Fk j i

vba~2r !#

52d i j @r ] r~ ã13
vba2ã12

vba!12~ ã13
vba2ã12

vba!#

22
r i r j

r
] r~ ã13

vba2ã12
vba!12e i jmr m@r ] r~b22

vba1b23
vba!

13~b22
vba1b23

vba!22b21
vba#,

which, using the incompressibility condition@see Eq.~A22!
in the Appendix withd53]

b23
vba1b22

vba54b21
vba1r ] rb21

vba ,

simplifies to

e i ,mF,m j
vbb~r !1] r k

@F jki
vba~2r !2Fk j i

vba~2r !#

52d i j

1

r
] r@r 2~ ã13

vba2ã12
vba!#22r i r j

1

r
] r~ ã13

vba2ã12
vba!

12e i jmr m

1

r
] rF 1

r 2 ] r~r 5b21!G .

5-3
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On the other hand, the linear term is written as

]2

]r
k

2R̃i j
HM~r !5r i r jF r ] r S 1

r
] r Ã

abD1
7

r
] r Ã

abG
1d i j F2Ãab1r ] r S 1

r
] r B̃

abD1
3

r
] r B̃

abG
1e i jmr mF r ] r S 1

r
] rC

abD1
5

r
] rC

abG .
Finally, settingi 5 j and summing over all index values ofi
gives the following equation:

~31r ] r !] t@c2 f̃ ab~r !#5~31r ] r !$4@ ã13
vba~r !2ã12

vba~r !#%

12h~31r ] r !F ]2

]r 2 1
4

r

]

]r G
3@c2 f̃ ab~r !#. ~9!

The first integral of this equation is

]

]t
@c2 f̃ ab~r !#54@ ã13

vba~r !2ã12
vba~r !#12hF ]2

]r 2 1
4

r

]

]r G
3@c2 f̃ ab~r !#. ~10!

This is the von Ka´rmán–Howarth equation for magnetic he
licity, or VKH-HM. It can be written in a slightly more fa-
miliar way, expressing the involved coefficients of the te
sors in terms of the parallel~labeledL) and perpendicular
~labeled 2 and 3) components, viz.:

ã13
vba~r !5

1

r
FL22

vba~r !5
1

r
FL33

vba~r !,

ã12
vba~r !5

1

r
F2L2

vba~r !5
1

r
F3L3

vba~r !,

c2 f̃ ab~r !5R̃LL
HM~r !;

the VKH-HM equation thus also writes

]

]t
R̃LL

HM~r !5
4

r
@FL22

vba~r !2F2L2
vba~r !#

12hF ]2

]r 21
4

r

]

]r GR̃LL
HM~r !. ~11!

Equation~11! is the main exact result of this paper.

B. A simplified form of VKH-HM

The VKH-HM equation~11! can be somewhat simplifie
in several steps. We first note that the second-order struc
function for the magnetic helicity,

BLL
ab~r !5^„aL~x8!2aL~x!…„bL~x8!2bL~x!…&,
02631
-

re

can be written in terms of the magnetic helicity correlati
function as

BLL
ab~r !52^aL~x!bL~x!&22R̃LL

HM~r !. ~12!

We also define the rate of transfer of magnetic helicity,ẽHM,
as ~see, for example Ref.@10# for the kinetic helicity case!

] t^aL~x!bL~x!&5
1

3
] t^ai~x!bi~x!&52

2

3
ẽHM. ~13!

Substituting Eqs.~12! and ~13! in Eq. ~11! leads to the fol-
lowing alternative form of VKH-HM:

2
2

3
ẽHM2

1

2

]

]t
BLL

ab~r !5
4

r
@FL22

vba~r !2F2L2
vba~r !#

12h
1

r 4

]

]r F r 4
]

]r
R̃LL

HM~r !G .
~14!

C. The long-time, high Reynolds number limit
of the VKH-HM equation

The above equivalent Eqs.~10!, ~11!, and~14! are exact.
They can be further simplified using now the hypothesis
long-time limit and furthermore neglecting the resistive te
in the inertial range, an hypothesis well justified for geoph
ical and astrophysical flows at high magnetic Reynolds nu
bers. In that case, one obtains

FL22
vba~r !2F2L2

vba~r !52
1

6
ẽHMr , ~15!

or written explicitly in terms of the basic fields:

^@vL~x!b2~x!2v2~x!bL~x!#a2~x8!&52
1

6
ẽHMr . ~16!

In this form, the~approximate! law ~16! is equivalent to
that of Kolmogorov @35# for the kinetic energy~see also
@36#!, as well as those obtained for energy and total cr
correlation in MHD @8,9#, and for kinetic helicity for the
Navier-Stokes equations@10#. Note that Eq.~16! is written in
terms of at least two different components of the involv
vectors; indeed, because of its helical nature, this relat
ship cannot be written exclusively in terms of, say, the lo
gitudinal components of the physical fields, contrary to t
case of the so-called ‘‘four-fifth’’ law of Kolmogorov@35#
which is written in terms of only the longitudinal velocit
differences.

Note further that, defining the electromotive force~EMF!
due to the turbulent motionsE t5v3b, it is easy to see tha
the above relationship combines the two distinct norm
components of the EMF and of the magnetic potential, v

^E 3
t ~x!a2~x8!&52

1

6
ẽHMr .
5-4
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A relationship similar to Eq.~16! is obtained when the com
ponents with subscript 2 are replaced by the other nor
components of index 3; thus, one may equivalently write
~16! as

^vL~x!S ibi~x!ai~x8!&2^bL~x!S iv i~x!ai~x8!&52
1

3
ẽHMr ,

~17!

which now brings it to a form more akin to the law written
Ref. @6# for the passive scalar and in Ref.@36# for kinetic
energy~see also Refs.@8–10#!. In terms of the electromotive
force, this becomes equivalently

^@E t~x!3a~x8!#L&51
1

3
ẽHMr . ~18!

As in all other known cases for these exact laws,
third-order correlators of the physical fields combine
gether in order to yield a~normal! linear scaling with dis-
tance, a result stemming from the invariance law, here
magnetic helicity. As expected, these invariance laws imp
correlations between the basic fields, and thus constrain
the dynamics of turbulent flows. For example, anomalo
scaling laws followed by structure functions of the veloc
and/or the magnetic field have been observed, e.g., witin
situ measurements in the solar wind@37# and numerically for
turbulent MHD flows in both two dimensions@38# and three
dimensions@39#; such laws are constrained by the flux re
tion ~17!. When measurable~as for direct numerical simula
tions!, the relationship~17! might prove useful, e.g., to de
fine the extent in scale of the inertial range of the inve
cascade of magnetic helicity in an unambiguous way.

IV. CONCLUSION

Three main results are obtained in this paper. On the
hand, we have derived an exact relationship for helical MH
flows, i.e., three-dimensional magnetized flows with no m
ror symmetry; it stems from the conservation of magne
helicity and we call it VKH-HM, or von Ka´rmán–Howarth
equation for magnetic helicity. This law is the third exa
linear scaling law derived for MHD turbulence and is sat
fied simultaneously with the two previous relationships@8,9#
obtained for total energŷ(v21b2)&/2 and cross correlation
^v•b&/2. It obtains from an evaluation of the nonlinear term
in the induction equation, and thus does not arise when
velocity and magnetic field are parallel, in particular in t
case of an ensemble of Alfve´n waves. Similarly, the afore
mentioned laws are not applicable for Beltrami and/or for
free MHD flows. This von Ka´rmán–Howarth equation for
magnetic helicity, evaluated in the long-time and nondif
sive limit, implies a linear dependence with scale of the c
relation between the two different transverse component
the magnetic potential and of the turbulent electromot
force.

The link between the exact law derived in this paper a
the dynamo action involving the electromotive force is n
clear, in particular in the saturation phase which relies ess
tially on the conservation of magnetic helicity@21,25#. In
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light of the law derived here, the problem of the saturation
the dynamo should be examined further using the direct
merical simulations; this point is left for the future work.

Similarly, the role of helicity in the problem of the rate a
which the small scale dynamics return to isotropy is a to
of active research presently; we plan to investigate in
future the way in which such a phenomenon in MHD
influenced by the constraint imposed by the VKH-HM equ
tion.

Note further that the VKH-HM equation is independent
the level of equipartition~or lack thereof! between kinetic
and magnetic energy. It provides a constraint on the dyn
ics of turbulent flows that can help their analysis, both n
merically and perhaps experimentally, e.g., in the Tayl
Green configuration of counter-rotating disks in gallium
sodium@18,19#. For example, the domain of validity of th
law ~17! for finite magnetic Reynolds numbers can be chos
as a nonambiguous definition, at least for low to moder
orders of correlators, of the inertial range of magnetic he
ity. The difficulty of measuring the magnetic potential e
perimentally can be alleviated by using Eq.~11! and rewrit-
ing it in terms of the magnetic field only~and the velocity!,
following the work in Ref.@10# for kinetic helicity ~see also
Ref. @40#!. Indeed, using the fact thatr e23LF23L

vbb(r )5FL22
vba

2F2L2
vba , one can readily show that the inertial range re

tionship ~16! becomes, in terms of the correlations betwe
velocity and magnetic field,

^v2~x!b3~x!bL~x8!&52^v3~x!b2~x!bL~x8!&52
1

6
ẽHM.

This implies the constancy of the correlator involving t
electromotive forceE t, viz.:

^E L
t ~x!bL~x8!&52

1

3
ẽHM.

Finally, at a more technical level, the general function
form of the third-order isotropic but nonmirror symmetr
correlation tensors between the three physical fields~either
vectors or pseudovectors! for homogeneous incompressib
flows is given in the Appendix. It is shown that four definin
functions are necessary in general, reducing to only t
functions when two of the three vectors are identical, as
the case for kinetic helicity in Navier-Stokes flows.

This implies that, at the level of third-order correlation
four independent functions are necessary, in general, to c
acterize fully the turbulent dynamics of the flow, leadinga
priori to four different scaling laws that will likely have to b
unraveled using the direct numerical simulations. This
quires highly resolved computations in three dimensio
which will be the outcome of a future work. The case
kinetic helicity, involving only two functions, may be sim
pler yet and should be taken as a first step toward chec
whether multiscaling occurs in helical flows. This point, a
though difficult, could indeed be examined on numerical
observational data, e.g., in the planetary boundary laye
very high Taylor-Reynolds number.
5-5



ive
-

d
st
ou
en
i

th

t

n
cit
so
te

er
d

r
s

n
al
-

d

on

s

are,

-

r a

ag-
tric

ic-

POLITANO, GOMEZ, AND POUQUET PHYSICAL REVIEW E68, 026315 ~2003!
ACKNOWLEDGMENTS

We acknowledge the support from the Strategic Initiat
Program at NCAR~Boulder!, and from the Programmes Na
tionaux PCMI/PNST and the ATIP at CNRS~Paris!.

APPENDIX: CORRELATION TENSORS
IN HELICAL FLOWS

The kinematics of isotropic tensors has been elaborate
several studies@29,30,33,41# for special cases, but the mo
general form of the third-order tensors in a homogene
isotropic but nonmirror symmetric flow has not been writt
to our knowledge. We also mention the case of tensors
volving axial vectors such as in MHD or when dealing wi
the vorticity, since one must thena priori distinguish be-
tween pseudoscalar and true scalar functions entering in
expression of such tensors.

Thus this Appendix is intended to be slightly more ge
eral than what is needed for treating the magnetic heli
case. We give a complete exposition of the form such ten
can take, following the well-known ideas already presen
in Robertson@33# and in Batchelor@30#. For the anisotropic
case, see, e.g.,@41,42#, and more recently Ref.@43#.

1. Second-order tensors

For the sake of completeness, we first give the gen
expressions of second-order tensors, as can be foun
Oughtonet al. @29#.

The two-points correlation tensor between two arbitra
vectorsu andv is a proper~true! tensor and can be written a

Ri j
uv~r !5^ui~x!v j~x8!&

5Auv~r !r i r j1Buv~r !d i j 1C̃uv~r !e i j ,r , , ~A1!

wherex85x1r , and the two functionsAuv(r ) and Buv(r )
are scalars andC̃uv(r ) is pseudoscalar. All three are eve
functions of the distancer because of isotropy, i.e., spheric
symmetry. Moreover,Ri j

uv(r )5Rji
vu(2r ) because of homoge

neity. When bothu andv are equal to the velocity field,Auu

andBuu are related to the energy of the flow andC̃uu to the
kinetic helicity ^u•v&/2. Note that whenRi j

uv(r ) is a
pseudotensor@by having eitheru or ~exclusive! v as a
pseudovector#, the same expression as in Eq.~A1! applies,
but now both Auv(r ) and Buv(r ) are pseudoscalars an
C̃uv(r ) is a scalar.

Incompressibility implies that

]Ri j
uv~r !

]r j
50,

which in turn leads to a relationship betweenAuv andBuv in
dimensiond, namely:

~d11!Auv~r !1r
]Auv~r !

]r
1

1

r

]Buv~r !

]r
50.
02631
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We define further the longitudinal and helical correlati
functions f uv(r ) and s̃uv(r ) as

RLL
uv ~r !5c2f uv~r !, R23

uv~r !5c2s̃uv~r !,

whereL refers to the direction alongr , and 2 and 3 to the
two normal directions. We thus have

RLL
uv ~r !5Auv~r !r 21Buv~r !5c2f uv~r !, ~A2!

R23
uv~r !5C̃uv~r !r eL235c2s̃uv~r !eL23, ~A3!

R22
uv~r !5R33

uv~r !5Buv~r !5c2guv~r !, ~A4!

where c25ūv̄ is a normalization coefficient using the rm
fields ū and v̄. Note that f uv(r ) and s̃uv(r ) are the two
generating functions of the second-order tensor, and they
respectively even and odd functions of the distancer. The
third function guv(r ) can be eliminated using the incom
pressibility condition, viz.,

guv~r !5 f uv~r !1
r

d21
] r f

uv~r !,

with ] r f
uv(r )5] f uv/]r .

We can now write the following standard expression fo
second-order tensor in the isotropic helical case:

Ri j
uv~r !5c2F f uv~r !d i j 1

r

d21

] f uv~r !

]r S d i j 2
r i r j

r 2 D
1e i j ,

r ,

r
s̃uv~r !G .

For i 5 j andd53, one recovers the usual relationship:

Rii
uv~r !5~31r ] r !@c2f uv~r !#.

As a special example taken from Oughtonet al. @29#, we
write the two pseudotensors as

Ri j
6~r !5^v i~x!bj~x8!6bi~x!v j~x8!&

related to the cross correlation of the velocity and the m
netic field; they each have a symmetric and an antisymme
part, namely:

Ri j
1~r !5

1

2
@^v i~x!bj~x8!1bi~x!v j~x8!&

1^v j~x!bi~x8!1bj~x!v i~x8!&#

and a similar expression is written forRi j
2 .

Another example is written below for the magnetic hel
ity tensor, central to the present paper; identifyingu with the
magnetic potentiala and v with the magnetic inductionb
5“3a, we have

Ri j
ab~r !5e j ,m]Rim

aa~r !/]r ,5R̃i j
HM~r !.
5-6
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The relationships between the (aa) and (ab) tensor
coefficients—following the definitions in Eq.~A1!—are

Ãab~r !5
1

r
] r C̃

aa~r !, ~A5!

B̃ab~r !52@r ] r C̃
aa~r !12C̃aa~r !#52

1

r
] r@r 2C̃aa~r !#,

~A6!

Cab~r !52Aaa~r !1
1

r
] rB

aa~r !. ~A7!

For i 5 j and atr 50, one recovers

HM5
1

2
^a•b&523C̃aa~0!. ~A8!

2. Third-order correlation tensors

We now begin the derivation of the functional form
third-order tensors in the isotropic case in helical geome

a. The general case

We define a general third-order correlator tensor betw
threevectorial fields u, v, andw as

F i j ,
uvw~r !5^ui~x!v j~x!w,~x8!&,

with x85x1r and with homogeneity assumed. Since is
ropy is also assumed, i.e., spherical symmetry or invaria
under arbitrary rigid rotations, but not reflexional~or mirror!,
symmetry, the third-order two-point correlation tensor can
a priori written as

F i j ,
uvw~r !5a11~r !r ,d i j 1a12~r !r jd i ,1a13~r !r id j ,

1a3~r !r i r j r ,1b̃23~r !r ie j ,mr m1b̃22~r !r je, imr m

1b̃21~r !r ,e i jmr m , ~A9!

where the seven tensor coefficientsa . . . and b̃ . . . are even
functions of the distancer. Note that the superscriptuvw in
the seven coefficients is omitted for the sake of simplicity.
expressing this formulation of the tensor, the relationship

r ie j ,mr m1r je, imr m1r ,e i jmr m5r 2e i j ,

is found useful in eliminating one term in Eq.~A9!, the one
proportional toe i j , .

As in the case of the second-order tensor, we can de
correlation functions in terms of the longitudinal and t
normal components of the involved fields, namely:

FLLL
uvw~r !5c3k~r !5r @a11~r !1a12~r !1a13~r !1r 2a3~r !#,

~A10!

FL22
uvw~r !5c3q3~r !5ra13~r !5FL33

uvw~r !, ~A11!

F2L2
uvw~r !5c3q2~r !5ra12~r !5F3L3

uvw~r !, ~A12!
02631
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F22L
uvw~r !5c3h~r !5ra11~r !5F33L

uvw~r !, ~A13!

FL23
uvw~r !5c3ã3~r !e23L5r 2b̃23~r !e23L52FL32

uvw~r !,
~A14!

F3L2
uvw~r !5c3ã2~r !e23L5r 2b̃22~r !e23L52F2L3

uvw~r !,
~A15!

F23L
uvw~r !5c3b̃~r !e23L5r 2b̃21~r !e23L52F32L

uvw~r !,
~A16!

wherec35ūv̄w̄ is a ~scalar! normalization coefficient base
on the ~scalar! r.m.s. values of the three fields, so that t
defining functions of the tensors be dimensionless. One
easily see thatã2(r ), ã3(r ), andb̃(r ) are even functions of
r, while k(r ), q2(r ), q3(r ), andh(r ) are odd functions ofr.

Obviously, if one ~and only one! field from the triplet
(u,v,w) is not a vector, this in turn exchanges the scalar
pseudoscalar nature of theai j (r ) andb̃i j (r ) functions. More-
over, note that

^ui~x!v j~x!w,~x2r !&5^ui~x8!v j~x8!w,~x!&

under the homogeneity assumption.
Two examples of third-order tensors relevant to t

present study of magnetic helicity areF i j ,
vba(r )

5^v i(x)bj (x)a,(x8)&, which is a pseudotensor, an
F i j ,

vbb(r )5^v i(x)bj (x)b,(x8)&, which is a true tensor; where
v is the velocity field,b the magnetic induction, anda its
vector potential.

It can be found useful to decompose the tensorF i j ,
uvw(r )

into its even,P, and an odd,Q, parts, viz.:

Pi j ,
uvw~r !5

1

2
@F i j ,

uvw~r !1F i j ,
uvw~2r !#, ~A17!

Qi j ,
uvw~r !5

1

2
@F i j ,

uvw~r !2F i j ,
uvw~2r !#. ~A18!

This is done independently of the fact that the tensor may
symmetric (1) or anti-symmetric (2) in its first two indi-
ces, viz.,F i j ,

uvw(r )56F j i ,
uvw(r ). Indeed, one defines the sym

metricSi j ,
uvw(r ) and antisymmetricAi j ,

uvw(r ) part of a tensor as
usual:

F i j ,
uvw~r !5Si j ,

uvw~r !1Ai j ,
uvw~r !, ~A19!

with

Si j ,
uvw~r !5

1

2
@F i j ,

uvw~r !1F j i ,
uvw~r !#

and

Ai j ,
uvw~r !5

1

2
@F i j ,

uvw~r !2F j i ,
uvw~r !#.

When symmetries with respect to indices occur, i.e., wh
u[v, relationships between the seven functions defin
5-7
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above can be easily derived, even without using yet at
stage the incompressibility condition.

Finally, note that only in the full isotropic case~which we
define as the case without helicity, i.e., with mirror symm
try!, can we write the homogeneity relationship as

^ua~x!ub~x!ug~x2r !&52^ua~x!ub~x!ug~x1r !&.

b. The incompressible case

For incompressible flows, the following continuity cond
tion must be satisfied:

]F i j ,
uvw~r !

]r ,
50,

for all values ofr ; it yields

r
]a11

]r
1da111~a121a13!50, ~A20!

1

r S ]a12

]r
1

]a13

]r D1r
]a3

]r
1~d12!a350, ~A21!

2~ b̃231b̃22!1~d11!b̃211r
]b̃21

]r
50. ~A22!

Furthermore, by contraction on its first two indices,F i j ,
uvw(r )

reduces to a solenoidal first-order tensorF i i ,
uvw(r ) which is

therefore identically zero, assuming as usual the absenc
nonregular solutions atr50. Thus, ]F i i ,

uvw(r )/]r ,50,
which leads to

da111~a121a13!1a3r 250.

With these relationships, the seven functions appearin
the definition of the general third-order tensor can now
written in terms of only four generating functions, which w
choose to bek(r ), q2(r ), b̃(r ), and ã2(r ); the last two
being identically zero in the full isotropic case. As can
seen below, they are simply related toa11(r ), a12(r ), b̃21(r ),
and b̃22(r ) through

a11~r !52c3

k~r !

r ~d21!
, ~A23!

a12~r !5c3

q2~r !

r
, ~A24!

b̃21~r !5c3

b̃~r !

r 2 , ~A25!
02631
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b̃22~r !5c3

ã2~r !

r 2 , ~A26!

with the remaining three functions being given by

a3~r !5c3

k~r !2r ] rk~r !

r 3~d21!
, ~A27!

a13~r !5c3F2q2~r !

r
1

~d21!k~r !1r ] rk~r !

r ~d21! G , ~A28!

b̃23~r !5c3F ~d21!b̃~r !1r ] r b̃~r !2ã2~r !

r 2 G ; ~A29!

d is the space dimension which, in the helical case, we t
equal to 3.

For third-order tensors, which are symmetric in their fi
two indices, the four generating functions above can be
duced to only two, one scalar and one pseudoscalar~as was
already known for the case of kinetic helicity!; we can
choose, e.g.,k(r ) and ã2(r ). Moreover, when full isotropy
is assumed, only one generating function remains, nam
k(r ) which identifies with the classical longitudinal correl
tion function for neutral fluids.

3. Structure functions

We turn now to second- and third-order tensors built
the increments of components of vector~or pseudovector!
fields,ui(x1r )2ui(x). At second order, it reads

Bi j
uv~r ![^„ui~x8!2ui~x!…„v j~x8!2v j~x!…&,

with straightforwardly

Bi j
uv~r !52^„ui~x!v j~x!…&2Ri j

uv~r !2Ri j
uv~2r !

52^„ui~x!v j~x!…&22Pi j
uv~r !.

Here, one has writtenRi j
uv(r )5Pi j

uv(r )1Qi j
uv(r ), where

Pi j
uv(r )5Auv(r )r i r j1Buv(r )d i j is the even part of the tenso

and Qi j
uv(r )5C̃uv(r )e i j ,r , its odd part. Note that, in this

case, the even part ofRi j
uv(r ) is also its symmetric part and

its odd part corresponds to its antisymmetric part.
Similarly, the third-order cross-structure function betwe

u, v andw is defined as

Bi j ,
uvw~r ![^„ui~x8!2ui~x!…„v j~x8!2v j~x!…

3„w,~x8!2w,~x!…&; ~A30!

by means of the homogeneity assumption, it can be writ
as
5-8
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Bi j ,
uvw~r !5@F j , i

vwu~r !2F j , i
vwu~2r !#1@F i j ,

uvw~r !2F i j ,
uvw~2r !#

1@F i , j
uwv~r !2F i , j

uwv~2r !#.

With the definitions given in Eq.~A18!, it simplifies to

Bi j ,
uvw~r !52@Qi j ,

uvw~r !1Qi , j
uwv~r !1Qj , i

vwu~r !#, ~A31!

with Qi j ,
uvw(r ) the odd part of theF i j ,

uvw(r ) correlation tensor.
A

on

02631
This relationship is a generalization of the classical Navi
Stokes~fluid! law,

BLLL
uuu~r !56QLLL

uuu~r !,

between longitudinal correlation and structure functions
the velocity field~see, e.g., Ref.@44#!.
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