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von Karman—Howarth relationship for helical magnetohydrodynamic flows
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We derive an exact equation for homogeneous isotropic magnetohydrodytMHix) turbulent flows with
nonzero helicity; this result is of the same nature as the classical vonadaHowarth(VKH-HM) formula-
tion for the kinetic energy of turbulent fluids. Helical MHD is relevant to the astrophysical flows such as in the
solar corona, or the interstellar medium, and in the dynamo problem. The derivation involves the new writing
of the general form of tensors for that case, for either vector@sgudgaxial vectors. It is shown that, for
general third-order tensors, four generating functions are needed when taking into account the nonmirror
invariance of helical fluids, instead of two as in the fully isotropic case. The new equation obtained, denoted by
VKH-HM, links the dissipation of magnetic helicity to the third-order correlations involving combinations of
the components of the velocity, the magnetic field, and the magnetic potential. Finally, in the long-time and
nonresistive limit, this relationship leads to a linear scaling with separation of the third-order tensor, correlating
the two normal components of the electromotive force and of the magnetic potential.
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. INTRODUCTION tal velocity-magnetic field correlatiodl c=(v-b)/2 [8,9] in

two- and three-dimensional incompressible Miiitherev is

In turbulent flows, the existence of rugged invarialys the velocity,b=V X a is the magnetic induction, anal the
that survive truncation of the nondissipative equations isnagnetic potentiagJ and for the kinetic helicityH,=(v
thought to play an important dynamical role, and may lead to w)/2 (where w=VXv is the vorticity for three-
nontrivial behavior when more than one such invariant isdimensional incompressible Navier-Stokes flojd€] (see
present, as already noted by Onsaddr Indeed, an inverse also Refs[11]).
cascade of kinetic energy to large scales in two space dimen- Another invariant of the MHD equations for zero mag-
sions can be predicted for Navier-Stokes turbulence on thgetic diffusivity [12] is the magnetic helicity
basis of an argument stemming from statistical mechanics; it
uses the fact that both energy and enstrophy are conserved in H =E<a- b)

L . M .
the inviscid casdsee, e.g., Kraichnan and Montgomégj 2
for a review. Such invariants cascade with a Fourier spec- ) ) )
trum I 4(k), wherek is the wave number, assuming isotropy: It is known to pl_ay an |mportant_dynam|cal role, e.g. in Fhe
the cascade is either to small scales or to large scales alfﬁ’lar corona—in flares and in coronal mass ejections

. S 13,14—and in the dynamo problem, i.e., the generation of
takes place at a ra rescribed by the injection mecha- A N A
i .p @, p ) y ) ], magnetic fields through turbulent motions. Magnetic fields
nism into the system. Dimensional analysis in the manner ofe gpserved in the core of the earth and planets, in the sun

Kolmogorov then leads to a prediction for power-law spectragng stars, and in the interstellar and intergalactic media. Dy-
lo(k), e.g., thek™>? kinetic energy spectrum for Navier- namos have been extensively studied theoretically and nu-
Stokes turbulence. Such Kolmogorov spectra are of a phemerically, starting with the pioneering works of Parkés]
nomenological nature except in the case of weak turbulencgnd Steenbeckt al. [16] in the former case and of Bullard
involving fast wavegsee, e.g., Ref$3,4]). and Gellman[17] in the latter. More recently, the dynamo
On the other hand, the presence of the invarigntdlows  effect in turbulent flows is being studied in the laboratory as
for the derivation ofexact equations. For example, von well [18,19 in the specific configuration corresponding to
Karman and Howarth[5] derived the relationship between two counter-rotating disks. The role of magnetic helicity in
the rate of energy dissipatiof)2 and the third-order corre- the dynamo mechanism arises in the nonlinear saturation of
lation functions of the velocity field. Similar exact equa- the so-calledy effect, i.e., in the saturation of the growth of
tions have been obtained for the variances of physical fielda magnetic field at a giveflarge) scale because of the pres-
at several instances, e.g., for the variance of a passive scalance of helicity(kinetic at first, kinetic and magnetic at later
[6], for that of the magnetic potential in two-dimensional stages of the instabilijyat small scale. It was conjectured in
incompressible magnetohydrodynamid®HD) [7], for the  Ref. [20] and shown—using second-order closures in Ref.
total (kinetic plus magneticenergyEr=(v?+b?)/2 and to- [21], as well as direct numerical simulations in Refs.
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[22,23—that H), undergoes an inverse cascade to largesnce of kinetic or magnetic helicity, the structure of the two-
scales. Later works confirmed these findings, and this cagoint correlation tensors is more complex than in the full
cade is also known to persist for supersonically driven flowssotropic case, i.e., isotropic and reflexi¢or mirror) sym-
[24], showing that even in the interstellar medium wheremetric cases. Their general form includes terms based on
compressibility plays an important role because of, e.g., suadditional fundamental invariants, such as

pernovae blast waves sweeping sporadically the gas, an

a-like dynamo is plausible. This saturation mechanism is €jeCidjre,

nonlinear and does not involve the later saturation of the .

growth of thetotal magnetic energy, a saturation which can'” the expression of the mean value products of veter

be linked directly to the magnetic Reynolds numberecent pseudovectgrcomponents in the directions efandd, the

study of this point can be found in Brandenburg and sarsofirected distance describing the configuration formed by
[25]). Moreover, the heating of the solar corona throughthe two points at which the correlations are studied. These

dissipative processes, is linked to the reversal of the magfvarnants preserve the rotational symmetry but change sign

netic dynamo field, a process in which the conservation ofVh€n the three-vector configuratiow,d,r) is reflected at

magnetic helicity plays an essential rdte3,26. Note also &Ny point or plang33]. In the above relationship, as usual,

that there is a resurgence of interest in helical flows in neu€ij¢ denotes the unit alternating tensor. Thus, for isotropic

tral fluids (see, e.g., Ref27] and references thergin turbulence, one can note that the second-order two-point cor-
We thus propose to derive in this paper the exact equatioFfation tensor is no longer index symmetric.

that takes into account the fact that the induction equation 1h€ Second-order correlation tensors have been dealt with
conservesH,, (a simplified version in the one-dimensional N Ref. [29], and the main results of these authors are re-
case is done by Galti@t al.[28]). In so doing, we shall need cal!ed in the first section of the Appendix. A thorough deri-

to write from first principles the complete form of the vation of the general form of the homogeneous third-order

second-order(see also Ref[29]) and third-order tensors tensors for incompressible isotropic but helical fields is ob-
when the mirror symmetry is broken, when tensors involvel@ined in the second section of the Appendix. For complete-
different fields (namely, here the magnetic potential, the ness, we restate in this section some of the tensorial objects

magnetic induction, and the velodifyand taking into ac- needed to obtain the VKH-HM equation. _
count the fact that the magnetic induction is an axial vector, 1€ second-order correlation tensor for the magnetic po-
This is performed following the approach of Batchell6), f[entlal is aproper (true) tensor which, assuming homogene-
and is shown in the Appendix for clear readership of thelly and isotropy, reads

remainder of the paper. We give basic definitions in Sec. I, ,

and we derive, iﬁ gec. Ill,gthe dynamical von' rgen— RAA(r) =(ai(x)a;(x")) =A(r)rr;+B*(r)
Howarth equation for magnetic helicity, which we call VKH-

HM. Finally, Sec. IV is the conclusion. +FCHeere, @)

where C23(r) is a pseudoscalar function and all the tensor
Il KINEMATICS OF HELICAL FLOWS coefficients are even functions of the distamee|r| due to
A. Definitions spherical symmetry.

We consider fluctuating fields in incompressible MHD ~a;\/lagnet|c helicity is relz_;lted 0 the term proportional to
flows; the zero-mean velocity(x) and magnetic fielb(x) = ()- Indeed, the antisymmetric part of the tensor
are, respectively, the proper and psefadél) vectors, with ~ C**(r)€ijer ¢ can also be written ad29,34:

X the Cartesian position vector relative to some fixed origin.

In the context of three-dimensional MHD turbulence, the e id)(r)
magnetic helicityH,, is a pseudoscalar, interpretable as a Cor, '
measure of knottedness of the magnetic field lir3is32.

The (unsymmetrizefimagnetic helicity correlation tensor Where¢(r) is an even pseudoscalar functionrofsuch that

¢(r=0)=H,, [see Eq.(A8)].
ﬁi‘?M(KX/):(ai(X)bj(X’» Using the Coulomb gauge, two generating functions re-
main linked to the magnetic helicity of the flow:
is a pseudotensor, whereas the magnetic poteafigl is a

true vector;x’ denotes the displaced position+r and R3(r) _taarys +£(9faa(r)P NELI TN
brackets denote the ensemble average or equivalently, under 72 (r)d 2 ar ij (1) + eije r o (r);
an ergodic hypothesis, large-space or long-time avei2@je 2)
Finally, because of homogeneify, ™ (x,x") =R M(r).
! ! as usual
B. Kinematical construction of tensors Pij(r)= 35— (rirj)/rz

In the case of homogeneous turbulence which has spheri- o
cal symmetry but does not have reflexional symmetry, i.e.is the incompressibility projecta?f23(r) is the(dimension-
for isotropic (or skew-isotropig turbulence, as in the pres- alized longitudinal correlation function of the magnetic po-
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tential, anda is the rms magnetic potential. It has been nec- The equation for the tim;:- evolution of the second-order
essary in the above equation to introduce as well a neworrelation pseudotensorR M(r)=(a(x)bj(x")) results
function's®3(r), with from Eg. (6), written at pomtx and the induction equation
- written at pointx’ =x+r. This leads to
R33(r)=rC?4(r) e,y =a€p3 S*(r),
SHm Ubb vba vba
: R — + —r)—Prla —
where the subscripL refers to the longitudinalalong r) atR (1= €iem®emi(1) + Jr [ ( = 1) = Pigi(—1)]
direction, while the subscripts 2 and 3 refer to the two re- 52
maining transverse d!r§9t|ons in the three-d|menS|_onaI space. 29— ~R_H_M(r) )
An analogous definition holds for the magnetic helicity g

pseudotensor with _ _
where the form of theb;;; " tensors are derived in the Ap-

IRG(r) pendix for the general cageee Eq(A9)], andd, = d/dry.
are ( Note that both ¢ba) and @bb) tensors appear in the

above equation. However, the proper ten@éjﬁf’(r) can be
the derivative being carried on the magnetic field. It can als@jerived from the pseudotensdr m](r) as fo||ows
be written as

Mr)=(ai(x)bj(x")) = €j¢m

Eiﬁmq)légﬂ(r) El(mfqua q)( (I‘)

RHm Fab
1 _fab S5+ ( )P Fe ab Zvba vba Zvba_ Zvba
—& (r)6ij+5 ——Pij(n)+ej¢— s (r), _p2 F a(ass2—2ash )+2a13 —aj)
(4) Iy ar re
wherec,=ab is a(scalaj constant, withb the (scalay rms rir; d(aj5—ajn?)
magnetic amplitude. Note that we generally indicate the o ar +€ijmm

pseudocharacter of a function or a tensor with a tilde symbol
except forH,, the magnetic helicity itself.

The third-order correlation tensor needed to derive the
VKH-HM equation is the following pseudotensor involving
the velocity, the magnetic field, and the magnetic potential:

a(bvba Uba)

vba vba
or +3(b53 5%)

2b”ba} . (8)

DA = (vi(x)bj(x)ag(x")) =a553(r)r 8 +a55%(r)r; 8y o '
The tensor coefficien& (r) are pseudoscalar functions,

+a‘it3’a(r)r e+ (r)rirr o+ b55%(r)ri€emfm  while theb: *(r) coefficients are scalar. Expressing all the
bie a third-order tensors as derived in the Appendix, the nonlinear
SO j€ciml mT D3N (€ijmnT () terms in Eq.(7) write, after lengthy but straightforward al-

gebraic computations:
where the seven coefficients appearing in this general defi-

nition are even functions of the distangeas for the second- elmqmﬂj(r)jL 9, [(p;}kﬁa( — r)—cbﬁ}’ia(— N]
order correlation tensor. The incompressibility constraint
leads to relationships between these coefficients and turns to =25ij[fﬂ (a%5%—ah?) +2(as52—a%h?)]

a formulation of the tensor involving only four generating
functions(see details in the Appendix
( pp d (? (avba lz)a)+26”m m[rﬂ (bgga+ buba)
IIl. A von KA RMAN EQUATION
FOR MAGNETIC HELICITY

A. The derivation which, using the incompressibility conditijsee Eq.(A22)
in the Appendix withd=3]

(bvba+ bvba) bvba

We now move on to the dynamics of magnetic helicity in
homogeneous MHD turbulent flows. The incompressible byba puba— 4psbar g psba,
MHD equations for the magnetic potentahvrite

simplifies to
di@a=vXxXb+ yAa,

€1 emP (1) + dr [P —1) = DA~ 1)]
using the Coulomb gaud@€-a=0; in the above equatiom
is the magnetic diffusivity. In MHD, this equation is coupled
to the velocity equation, the latter not being needed to prove
that magnetic helicity is an invariant of the flow; henceforth,
we will not need the velocity equation to derive the exact v b 1, [ia (r%b 1)}
VKH-HM law for magnetic helicity. mimp Tr p 2O Fal

1
=24 a[r2<a“ba a3 - 2rir; - g (ag3t - ags
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On the other hand, the linear term is written as

7 -
+ Fé’rAab

9 BHM 1 Rab
EKZR” (r)y=rirj|ro, F(?rA

2A% 41 g,

1 -
—4,B
r

+5ij

+Eijmrm

Finally, settingi=j and summing over all index values of

gives the following equation:

(3+713,) 0 cof20(r)]=(3+rd,){4[a55%(r) —a35%r) ]}

(92

+277(3+ rﬂr)[&—rz—F F E

X[ c,f20(r)].

The first integral of this equation is

J Fab _ Aravba ~vba
ﬁ[czf (r)]=4[al3™(r)—aj;"(r)]+2»

X[c,f(r)].

3 -
+ FﬂrBab}

1 5
ro,| —a,Ca |+ —4,CaP
r r

/ +
ar?
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can be written in terms of the magnetic helicity correlation
function as

BEP(r)=2(a (x)b,(x))— 2RI (r). (12

We also define the rate of transfer of magnetic helicify,
as (see, for example Ref10] for the kinetic helicity case

1 2.
da (x)b(x))= §f7t<ai(x)bi(x)>: - §GHM- (13
Substituting Eqs(12) and (13) in Eqg. (11) leads to the fol-

lowing alternative form of VKH-HM:

_ENEHM_EE

4
z€ M= 5 2 BEb() = C[OP33(n — @53

+217i —[r“iﬁHM(r)
(14)

C. The long-time, high Reynolds number limit
of the VKH-HM equation

The above equivalent Eq&L0), (11), and(14) are exact.
They can be further simplified using now the hypothesis of
long-time limit and furthermore neglecting the resistive term

This is the von Keman—Howarth equation for magnetic he- in the inertial range, an hypothesis well justified for geophys-

licity, or VKH-HM. It can be written in a slightly more fa-

ical and astrophysical flows at high magnetic Reynolds num-

miliar way, expressing the involved coefficients of the ten-bers. In that case, one obtains

sors in terms of the parallélabeledL) and perpendicular

(labeled 2 and 3) components, viz.:
~ 1 1
a13%(r) = T Y33 = T PYE(r),
~ 1 1
A13°(r) = - DYI(r) = - DEIS(r),
Fabry=RMM(r)-
Co (r) LL (r);
the VKH-HM equation thus also writes
d 4
SR = ST DY) — P8P

az
+279

+__
a2 roar

Equation(11) is the main exact result of this paper.

B. A simplified form of VKH-HM

d=n
RLLM(r).

1
DY)~ DE5(r) = — e, (15)
or written explicitly in terms of the basic fields:

1
([vL(x)ba(X) —v2(x)bL(X)Jax(x')) = — gﬁHMr- (16)

In this form, the(approximatg law (16) is equivalent to
that of Kolmogorov[35] for the kinetic energy(see also
[36]), as well as those obtained for energy and total cross
correlation in MHD [8,9], and for kinetic helicity for the
Navier-Stokes equatiori40]. Note that Eq(16) is written in
terms of at least two different components of the involved
vectors; indeed, because of its helical nature, this relation-
ship cannot be written exclusively in terms of, say, the lon-
gitudinal components of the physical fields, contrary to the
case of the so-called “four-fifth” law of Kolmogoroy35]
which is written in terms of only the longitudinal velocity
differences.

Note further that, defining the electromotive for&MF)
due to the turbulent motion§'=vxb, it is easy to see that

The VKH-HM equation(11) can be somewhat simplified the above relationship combines the two distinct normal
in several steps. We first note that the second-order structuf@mponents of the EMF and of the magnetic potential, viz.,

function for the magnetic helicity,

B2P(r)=((a.(x")—a (X)) (b (x") —bL(x))),

t ’ :—]——‘HM
(E3(x)ax(x")) g€ r.

026315-4



von KARMAN-HOWARTH RELATIONSHIP FOR HELICA . . . PHYSICAL REVIEW E 68, 026315 (2003

A relationship similar to Eq(16) is obtained when the com- light of the law derived here, the problem of the saturation of
ponents with subscript 2 are replaced by the other normahe dynamo should be examined further using the direct nu-
components of index 3; thus, one may equivalently write Eqmerical simulations; this point is left for the future work.
(16) as Similarly, the role of helicity in the problem of the rate at
L which the small scale dynamics return to isotropy is a topic
, N H of active research presently; we plan to investigate in the
(vL(X)Zibi(x)ai(x")) —(bL(X) Zjvi(X)ai(X )>__§6 M future the way in which such a phenomenon in MHD is
(17)  influenced by the constraint imposed by the VKH-HM equa-
tion.

Note further that the VKH-HM equation is independent of
the level of equipartition(or lack thereof between kinetic
and magnetic energy. It provides a constraint on the dynam-
ics of turbulent flows that can help their analysis, both nu-
1 merically and perhaps experimentally, e.g., in the Taylor-
([E'x)xax)] )=+ et (18) Green configuration of counter-rotating disks in gallium or

3 sodium[18,19. For example, the domain of validity of the

As in all other known cases for these exact laws, thelaw (17) for finite magnetic Reynolds numbers can be chosen

third-order correlators of the physical fields combine to-2> 2 nonambiguous definition, at least for low to moderate

ether in order to vield anormgb )I/inear scaling with dis- orders of correlators, of the inertial range of magnetic helic-
9 yIelc ; caing i:ty. The difficulty of measuring the magnetic potential ex-
tance, a result stemming from the invariance law, here o

; . . - . Berimentally can be alleviated by using E1) and rewrit-
magnetic helicity. As expecteql, these invariance laws Impos ng it in terms of the magnetic field onlfand the velocity,
correlatlons_ between the basic fields, and thus constraints ﬂ‘%llowing the work in Ref[10] for kinetic helicity (see also
the dynamics of turbulent flows. For example, anomalou% .[40)). Indeed ing the fact thate cI)Ubb(r)—(I)Uba
scaling laws followed by structure functions of the velocity ~c - - ‘ndeed, using the fact thatleoy B3 (1) =12

b . . .
and/or the magnetic field have been observed, e.g., iith P20z, One can readily show that the inertial range rela-

situ measurements in the solar wif@7] and numerically for ~ ionship (16) becomes, in terms of the correlations between

turbulent MHD flows in both two dimensiori88] and three ~ Velocity and magnetic field,

dimensiond 39]; such laws are constrained by the flux rela-

i . i rical simula- ,

lons;, the relationahi1) might prove useful, 6.6, © de.  (v200BI00BL(¢)) = —(us()ba(bL(X'))= ~ ge.

fine the extent in scale of the inertial range of the inverse

cascade of magnetic helicity in an unambiguous way. This implies the constancy of the correlator involving the
electromotive forcet!, viz.:

which now brings it to a form more akin to the law written in
Ref. [6] for the passive scalar and in R¢86] for kinetic
energy(see also Ref§8-10). In terms of the electromotive
force, this becomes equivalently

IV. CONCLUSION

Three main results are obtained in this paper. On the one (EL(x)b (X)) =— ]_""HM_
hand, we have derived an exact relationship for helical MHD 3
flows, i.e., three-dimensional magnetized flows with no mir-
ror symmetry; it stems from the conservation of magnetic Finally, at a more technical level, the general functional
helicity and we call it VKH-HM, or von Kaman—Howarth  form of the third-order isotropic but nonmirror symmetric
equation for magnetic helicity. This law is the third exact correlation tensors between the three physical fi¢dher
linear scaling law derived for MHD turbulence and is satis-vectors or pseudovectoror homogeneous incompressible
fied simultaneously with the two previous relationship®]  flows is given in the Appendix. It is shown that four defining
obtained for total energy(v2+b?))/2 and cross correlation functions are necessary in general, reducing to only two
(v-b)/2. It obtains from an evaluation of the nonlinear termsfunctions when two of the three vectors are identical, as is
in the induction equation, and thus does not arise when ththe case for kinetic helicity in Navier-Stokes flows.
velocity and magnetic field are parallel, in particular in the  This implies that, at the level of third-order correlations,
case of an ensemble of Alfaewaves. Similarly, the afore- four independent functions are necessary, in general, to char-
mentioned laws are not applicable for Beltrami and/or force-acterize fully the turbulent dynamics of the flow, leadiag
free MHD flows. This von Keman—Howarth equation for priori to four different scaling laws that will likely have to be
magnetic helicity, evaluated in the long-time and nondiffu-unraveled using the direct numerical simulations. This re-
sive limit, implies a linear dependence with scale of the cor-quires highly resolved computations in three dimensions,
relation between the two different transverse components okhich will be the outcome of a future work. The case of
the magnetic potential and of the turbulent electromotivekinetic helicity, involving only two functions, may be sim-
force. pler yet and should be taken as a first step toward checking

The link between the exact law derived in this paper andvhether multiscaling occurs in helical flows. This point, al-
the dynamo action involving the electromotive force is notthough difficult, could indeed be examined on numerical or
clear, in particular in the saturation phase which relies essersbservational data, e.g., in the planetary boundary layer at
tially on the conservation of magnetic helicif21,25. In  very high Taylor-Reynolds number.
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wherelL refers to the direction along, and 2 and 3 to the
APPENDIX: CORRELATION TENSORS two normal directions. We thus have

IN HELICAL FLOWS

uv — AUV 2 uv — uv
The kinematics of isotropic tensors has been elaborated in REL(N=AT(Or+BR(r) =cot™(r), (A2)
several studie§29,30,33,4] for special cases, but the most " ~ o ~uo
general form of the third-order tensors in a homogeneous 23(1) = C™(r)r e 23=C8™(r) € 3, (A3)
isotropic but nonmirror symmetric flow has not been written
to our knowledge. We also mention the case of tensors in- 25(r) =R33(r)=B"(r)=c,g"(r), (Ad)

volving axial vectors such as in MHD or when dealing with .

the vorticity, since one must theam priori distinguish be- Wwherec,=uv is a normalization coefficient using the rms

tween pseudoscalar and true scalar functions entering in thelds u and v. Note thatf“(r) and's“(r) are the two

expression of such tensors. generating functions of the second-order tensor, and they are,
Thus this Appendix is intended to be slightly more gen-respectively even and odd functions of the distanc&he

eral than what is needed for treating the magnetic helicitythird function g“’(r) can be eliminated using the incom-

case. We give a complete exposition of the form such tensofsressibility condition, viz.,

can take, following the well-known ideas already presented

in Robertsor{33] and in Batchelof30]. For the anisotropic w w r "
case, see, e.d41,47, and more recently Ref43]. g™ (r)=f"(r)+ d_lﬁrf (r),
1. Second-order tensors with o, (r)=af"/or.

) ) We can now write the following standard expression for a
For the sake of completeness, we first give the generalgcong-order tensor in the isotropic helical case:
expressions of second-order tensors, as can be found in
af“"(r)( ___rirj)
ij

Oughtonet al. [29].
The two-points correlation tensor between two arbitrary Ri‘}”(r)=c2 a=1 ar e
vectorsu andv is a propel(true) tensor and can be written as

fU(r) 8, +

[~
RY(r)=(ui(x)vj(x")) +€ij0~8(1)

=ATONG B 6T CE (D e, (AD o =j andd=3, one recovers the usual relationship:
wherex’ =x-+r, and the two function\"’(r) and B"’(r) RY(r)=(3+ra,)[c,fU(r)].

are scalars an€"(r) is pseudoscalar. All three are even

functions of the distancebecause of isotropy, i.e., spherical ~ As a special example taken from Oughteinal. [29], we
symmetry. MoreoverRi’(r) =R’"(—r) because of homoge- Write the two pseudotensors as

neity. When bothu andv are equal to the velocity field"" N , ,

andB"Y are related to the energy of the flow a@4" to the Rij (N = (vi(x)b;(x") £bi(X)v;(x"))

kinetic helicity (u-w)/2. Note that whenR{’(r) is @ rejated to the cross correlation of the velocity and the mag-

pseudotensofby having eitheru or (exclusiv v as a petjc field; they each have a symmetric and an antisymmetric
pseudovectdy the same expression as in Hé1) applies, part, namely:

but now both A"/(r) and B“(r) are pseudoscalars and

CY(r) is a scalar.
Incompressibility implies that

RO +(0;(0by(X') + b (X)v;(x))]
ar; ’ and a similar expression is written f&; .
Another example is written below for the magnetic helic-
which in turn leads to a relationship betwegtt andB"” in ity tensor, central to the present paper; identifyingith the
dimensiond, namely: magnetic potentiah and v with the magnetic inductiorp

=V Xa, we have

1
Rij (1) = 5 [{0i()bj(X) + bi(x)v;(x"))

JAY(r) 1 gBY(r)
+= =0

(d+ DA™ () +r ar rooor ' Rﬁb(r):fjfmﬁR?nf(r)/ﬁreZNRikj'M(r)-
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The relationships between thead) and (@b) tensor uw(r) = ch(r) =rag(r)=®5%Y(r), (A13)
coefficients—following the definitions in EqAl)—are
~ 1 _ 158 (1) =C3a3(r) €23 =1 "Dos(T) €29 = — P35(r),
A%(r)= —:C2%(r), (A5) (A14)
DEVS(r) = Caaa(r) €ra =12Dyy(1) €29 = — DYS(1),
=ab = = 1 o= (A15)
B2°(r)=—[rg,C®(r)+2C3(r)]=— Far[r C24(r)],
(AB) q)gg,‘_”(r):c;,é(r)ezg,_zr2521(r)623L— D3 (r),
1 (A16)
ab — _ paa - aa -
CH(r)=-A"N+ r JrB(r). (A7) wherec;=uvw is a(scalaj normalization coefficient based
on the (scalaj r.m.s. values of the three fields, so that the
Fori=j and atr=0, one recovers defining functions of the tensors be dimensionless. One can
1 easily see thadr,(r), az(r), andB(r) are even functions of
M :§<a. b)=—3C?3%0). (Ag8) I, whilek(r), dx(r), qs(r), andh(r) are odd functions of.

Obviously, if one(and only ong field from the triplet
(u,v,w) is nota vector, this in turn exchanges the scalar or
2. Third-order correlation tensors pseudoscalar nature of tag(r) andBij(r) functions. More-
We now begin the derivation of the functional form of OVer, note that
third-order tensors in the isotropic case in helical geometry. (U (00 ()We(X— 1)) = (U (X ) (X )We(X)
a. The general case

under the homogeneity assumption.
We define a general third-order correlator tensor between Two examples of third-order tensors relevant to the

threevectorial fields u, v, andw as present study of magnetic helicity aredb”*}a(r)
tow ) (v (X)bj(x)ac(x")), which is a pseudotensor and
e (N=(Uix)v;(x)We(x")), 52(r) = (vi(x)bj(x)b,(x)), which is a true tensor; where

: , : . . .V |s the velocity field,b the magnetic induction, and its
with x"=x+r and with homogeneity assumed. Since isot- vector potential.

ropy is also assumed, i.e., spherical symmetry or invariance W
under arbitrary rigid rotations, but not reflexiorfal mirror), 'nt(l)t i;::re]:vt; f;)u;;j dujr?fgldgo degt:gp&ig the tenbﬁi; (r)
symmetry, the third-order two-point correlation tensor can bé o Q. parts, viz..
a priori written as

(r)——[<I>.””Wr)+<I>i”-”W<—r)], (A17)
i (r)=aqy(r)r8j+a(r)rjdi+as(rridj, il )

+a3(r)rirjr€+b23(r)ri6j(fmrm+bzz(r)rjfeimrm QHU(W(r):%[ iL}UeW(r)_ IL;U(W(_I.)] (A18)
+ D21 ()T ¢ €jml m > (A9)

_ This is done independently of the fact that the tensor may be
where the seven tensor coefficienats andb = are even symmetric (+) or anti-symmetric ¢) in its first two indi-
functions of the distance Note that the superscripbw in  ces, viz., IL;U(W(r) +=®'(r). Indeed, one defines the sym-
the seven coefficients is omitted for the sake of simplicity. |nmetr|c$ “(r) and antlsymmetn@\,‘j’}w(r) part of a tensor as
expressing this formulation of the tensor, the relationship ysyal:

2
Fi€jem mtrj€himmt T e€ijmMm=T-€j¢ i (N=S57"(r)+ A" (r), (A19)

is found useful in eliminating one term in EGA9), the one
proportional toe;; ;.

As in the case of the second-order tensor, we can define ow 1 ow ow
correlation functions in terms of the longitudinal and the e (1= 5[ P (N+@(r)]
normal components of the involved fields, namely:

with

uvw _ _ 2 and
Oy L(r)=cgk(r)=r[ay(r)+a(r)+asr)+raas(r)],
(A10)
.L]”(W(f)_—[q)ﬂ”fw(f) 55" (n)].
oo (r)=cgas(r)=rax(r)=®53(r), (A1l
Duw ow When symmetries with respect to indices occur, i.e., when
D3l5(r)=csta(r)=ra(r)=®z/3(r),  (Al2)  y=v, relationships between the seven functions defined
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above can be easily derived, even without using yet at this (1)

stage the incompressibility condition.
Finally, note that only in the full isotropic cagehich we

define as the case without helicity, i.e., with mirror symme-

try), can we write the homogeneity relationship as

(Ua(XUE(XUL(X=T)) = = (U (X)Ug(X)U,(X+T)).

b. The incompressible case

For incompressible flows, the following continuity condi-

tion must be satisfied:

i

ar,

for all values ofr; it yields

r— tdant(atay =0, (A20)
1/da;, dags dag
T\ T [T TAr2am0, (A2
T ~ dbay
—(bgst b22)+(d+1)b21+|'(9—r=0. (A22)

Furthermore, by contraction on its first two indicd#f’(‘”(r)
reduces to a solenoidal first-order tendal},"(r) which is

PHYSICAL REVIEW E58, 026315 (2003

r
>, (A26)

Bzz(r)zcs r

with the remaining three functions being given by

k(r)y—ra.k(r)

as(r)=cs—r3(d_1) , (A27)

- d—1)k(r)+rak
ay(r)=cs qf“)+( )r<((;)-1; (”}, (A28)
st(r):%[(d—1)[3(r)+:28r,3(r)—az(r); A29)

d is the space dimension which, in the helical case, we take
equal to 3.

For third-order tensors, which are symmetric in their first
two indices, the four generating functions above can be re-
duced to only two, one scalar and one pseudosc¢akmwas
already known for the case of kinetic heligitywe can
choose, e.gk(r) anda,(r). Moreover, when full isotropy
is assumed, only one generating function remains, namely
k(r) which identifies with the classical longitudinal correla-
tion function for neutral fluids.

3. Structure functions

We turn now to second- and third-order tensors built on
the increments of components of veci@ar pseudovector

therefore identically zero, assuming as usual the absence &€lds, u;(x+r)—u;(x). At second order, it reads

nonregular solutions at=0. Thus, d®;%"(r)/dr,=0,
which leads to

dall+ (a12+ a13) + a3r2: O

With these relationships, the seven functions appearing in
the definition of the general third-order tensor can now be
written in terms of only four generating functions, which we
choose to bek(r), q,(r), B(r), and a,(r); the last two
being identically zero in the full isotropic case. As can be

seen below, they are simply relatedatp(r), a;o(r), b,y(r),
andb,(r) through

k
ay(r)=—cg r(d(—i)l)’ (A23)
aun=c 2", (n24)
521(r)203ﬁ—:22, (A25)

BH(N=((ui(x) = u;(x)(0;(X") —vj(x))),

with straightforwardly

B (1) =2((Ui(X)v;(x))) — R¥(r) ~R¥(~r)
= 2((u(x)v;(x))) ~ 2PY(r).

Here, one has writterR;’(r)=P;"(r) + Q;’(r), where
Pi’(r)=A"(r)rirj+B"(r)§; is the even part of the tensor
and Qj’(r)=C"(r)ejj,r¢ its odd part. Note that, in this
case, the even part cﬂi‘}”(r) is also its symmetric part and
its odd part corresponds to its antisymmetric part.

Similarly, the third-order cross-structure function between
u, v andw is defined as

BIZ(N)=((Ui(x) — Ui () ©;(x') —v;(x))

X (We(X') =We(X))); (A30)

by means of the homogeneity assumption, it can be written
as
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iL}v€W(r):[<me(r)_<pmu -)]+[ iujv€W(r)_ iul_v€W(_r)] This relatipnship is a generalization of the classical Navier-
Stokes(fluid) law,
+[<I>i“€"}’”(r)—<1>i‘}"jvv -n)].

With the definitions given in EqA18), it simplifies to BUUY (1) = 6QLYY(r),

Bie" (1) =2[ Qi7" (N +Qij" (N +Qji'(n], (A31) o . _
between longitudinal correlation and structure functions of
with Q;%"(r) the odd part of theb;;%"(r) correlation tensor. the velocity field(see, e.g., Ref44]).
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